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Abstract

Objective—For intracortical brain-machine interfaces (BMIs), action potential voltage 

waveforms are often sorted to separate out individual neurons. If these neurons contain 

independent tuning information, this process could increase BMI performance. However, the 

sorting of action potentials (“spikes”) requires high sampling rates and is computationally 

expensive. To explicitly define the difference between spike sorting and alternative methods, we 

quantified BMI decoder performance when using threshold-crossing events versus sorted action 

potentials.

Approach—We used data sets from 58 experimental sessions from two rhesus macaques 

implanted with Utah arrays. Data were recorded while the animals performed a center-out 

reaching task with seven different angles. For spike sorting, neural signals were sorted into 

individual units by using a mixture of gaussians to cluster the first four principal components of 

the waveforms. For thresholding events, spikes that simply crossed a set threshold were retained. 
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We decoded the data offline using both a Naïve Bayes classifier for reaching direction and a linear 

regression to evaluate hand position.

Results—We found the highest performance for thresholding when placing a threshold between 

−3 to −4.5*VRMS. Spike sorted data outperformed thresholded data for one animal but not the 

other. The mean Naïve Bayes classification accuracy for sorted data was 88.5% and changed by 

5% on average when data was thresholded. The mean correlation coefficient for sorted data was 

0.92, and changed by 0.015 on average when thresholded.

Significance—For prosthetics applications, these results imply that when thresholding is used 

instead of spike sorting, only a small amount of performance may be lost. The utilization of 

threshold-crossing events may significantly extend the lifetime of a device because these events 

are often still detectable once single neurons are no longer isolated.
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I. Introduction

Brain-machine interfaces (BMIs) translate electrophysiological signals into command 

signals for assistive technology [1,2] to aid individuals with severe neurological disorders. 

This information can be acquired via multi-electrode arrays that penetrate 1–2 mm into the 

cortex. Research in this field has allowed nonhuman primates [3–8] and individuals with 

paralysis [1,9–12] to use signals from the brain to move a computer cursor. Related research 

has also demonstrated that nonhuman primates [13] and people [14,15] can control a robotic 

arm for self-feeding. In order to control these devices, action potentials from the motor 

cortex are used because they are associated with kinematic [16] and kinetic [17] movement 

parameters.

Spike sorting is a process that involves examining the voltage deflections on each recording 

electrode and differentiating the action potentials (“spikes”) with distinctive waveforms. It is 

commonly used to analyze electrical signals from each electrode in order to determine which 

action potentials were emitted from a given neuron [18]. For BMI applications, this 

procedure is most useful on a subset of electrodes where neurons contain independent 

information [19], meaning they each fire preferentially for a specific target or task. 

However, if electrodes contain primarily one single neuron each or contain neurons with 

similar tuning, spike sorting would not be expected to provide an appreciable performance 

gain relative to other methods. In addition, our previous study found that although single 

neurons may remain above the noise for years, they become less discriminable from each 

other with time [20].

Spike sorting also presents several obstacles that make the transition of neural prosthetics 

from research to the clinic more difficult [21]. It requires high sampling rates (~30,000 s−1) 

and is computationally expensive, which can increase the power consumption of an 

implantable device. While several groups have automated this process on large sets of 

recording electrodes [7,19,22,23], automated algorithms are rarely applied in real-time 

because they involve software development and hardware resources that may not be readily 
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available. For these reasons, it is currently unclear whether it is worth the time and resources 

required to spike sort.

There are currently several alternatives to spike sorting. Upcoming movement can be 

accurately predicted by using multiunit activity (MUA), which is estimated by band-pass 

filtering the data, eliminating extreme values, and computing the sample-by-sample root 

mean square (RMS) voltages [24]. Cortical local field potentials (LFPs) are summation 

signals of excitatory and inhibitory dendritic potentials that are also commonly used to 

predict movement [25]. Another method, thresholding, has become an increasingly popular 

alternative to spike sorting. This process involves setting a threshold for every electrode 

channel and detecting each time the voltage potential exceeds the threshold. This procedure 

ignores whether the action potential activity results from more than one neuron [8,20,21]. It 

is advantageous because it requires no human intervention and it is neither time-consuming 

nor computationally expensive. If performance is still sufficiently high, it could be 

beneficial for chronically implanted systems because it would allow for lower per-channel 

power requirements. This could be used either to reduce power supply constraints or to add 

additional channels with the same power supply.

Several studies have shown that complex movements can be decoded without the detection 

of isolated single units. A recent closed-loop study used threshold-crossing events obtained 

multiple years after implantation, when spikes were not well isolated [8,20,26]. They used a 

new algorithm, the ReFIT-Kalman filter, which performed 2.5x better than the original 

Velocity-KF algorithm and 86% as well as the real hand for center-out-and-back cursor 

control [8]. Stark and Abeles demonstrated that it is possible to predict upcoming movement 

accurately with a small number of electrodes by utilizing thresholded spikes and by 

estimating multiunit activity [24]. Related research by Fraser and colleagues has also 

suggested that thresholding is comparable to spike sorting [21]. In their study, four data sets 

from one day of online experimental testing demonstrated that thresholded data could 

sometimes outperform spike sorted data. On the other hand, a recent study by Todorova et 

al. concluded that basic spike sorting outperforms low-threshold waveform-crossing 

methods [27]. Because these disagreeing studies employ different threshold placement 

techniques, a general conclusion about the performance of sorted data versus unsorted data 

cannot yet be reached. To gain a better understanding of these conflicting results, it will be 

necessary to evaluate a wide range of thresholds and the contributions of different neuron 

subpopulations in a large number of data sets.

In this study, we quantified the differences in performance between spike sorting and 

thresholding in two animals using 58 daily data sets. Other studies have analyzed the 

performance of different spike sorting methods [28], multiunit activity [24,28], and local 

field potentials [24,28– 36]. To our knowledge, this is the first study that uses a 

comprehensive data set to find an optimal threshold level in addition to quantifying the 

differences in decoder performance between spike sorting and thresholding. It is also one of 

the few studies to compare the decoder performances of single neurons, single neurons with 

minimal contamination from noise, multiple neurons, and combinations of these unit types. 

We used Naïve Bayes classification and linear regression to analyze the performance of 

single neurons versus multiple neurons, RMS voltage thresholds, fixed voltage thresholds, 
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and spike sorting only a subset of channels. When partially spike sorting, we also evaluated 

the characteristics of channels that give the highest and lowest performances when spike 

sorted.

II. Methods

A. Data Collection

The Stanford University Institutional Animal Care and Use Committee approved all 

protocols. The data and training methods used in this study are the same as in [20]. Two 

rhesus macaques, L and I, performed a center-out reaching task to 28 potential visual targets, 

with four distances and seven angles. These were collapsed into seven classified angles in 

our analysis. This task was performed on a fronto-parallel screen in complete darkness (Fig. 

1a). Hand movements were optically tracked with reflective beads placed on the distal joint 

of the index or middle finger. Hand movements were acquired at a rate of 60 samples s−1 

(nominal submillimeter resolution) using a Polaris system (NDI, Waterloo, Ontario, 

Canada). The task was sequenced using Tempo software (Reflective Computing, St. Louis, 

MO). The animals were trained for many months prior to the present study; therefore, it is 

likely that little to no learning occurred. Experiments typically lasted 1–5 hours and animals 

were given a juice reward for successful trials.

One array was implanted in PMd/M1 of each animal via standard neurosurgical techniques. 

The data were recorded using silicon ‘Utah’ arrays (Blackrock Technologies Inc., Salt Lake 

City, UT, USA) made up of 100 microelectrodes on a 10×10 grid with 400 μm center-to-

center spacing. When data collection started, Monkey L and I’s arrays were 11 and 7 months 

old with substantial single unit activity. Data were recorded in the rig using a Cerebus 

system (Blackrock Microsystems, Salt Lake City, UT) over 6 and 8 weeks in monkeys L and 

I (Fig. 1b). Sixty-nine daily data sets were acquired during these time periods, but just 58 

were analyzed because we only used data sets with over 100 reaches per target.

Blackrock’s built-in function was used for calculating the RMS voltage, which is slightly 

different than the standard calculation. Their algorithm calculates a biased estimate of the 

RMS voltage of the noise of the spike data stream. In the equations below, si represents the 

30 kHz sampled spike stream after it is filtered, and xi represents the mean-squared value. 

Equation 1 calculates one VRMS value for a set of 600 continuous samples. It does this for 

two seconds, which results in 100 mean-squared values. In equation 2, the lowest five of 

these values are discarded and the next 20 are used to calculate the final RMS voltage. The 

rationale for this method is to avoid inflating the VRMS value due to the presence of large 

artifacts.

(1)
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(2)

(3)

B. Spike Sorting Technique

We used the spike sorting methods described in [19,20,37] to visualize and identify the 

action potentials associated with different neurons. All neural data were analyzed offline in 

MATLAB (MathWorks, Natick, MA, USA). Although a closed-loop study is currently the 

gold standard, we performed an open-loop analysis because we wanted to analyze the same 

data using different techniques. Briefly, the data were high-pass filtered in order to eliminate 

local field fluctuations. When the signal crossed a threshold relative to its RMS voltage, a 

short voltage snippet was recorded before and after the threshold crossing. Very large 

“juicer” artifacts were also removed by eliminating “units” that stayed low for ~1ms after 

the triggering peak. These rare inter-trial events would not have impacted decoder 

performance, but were problematic for another study using this data that involved 

identifying the largest single unit [20]. Next, the remaining data were shifted in time in order 

to align all of the peaks. The data were then noise-whitened and the top four principle 

components of the waveform snippets were obtained. A mixture-of-gaussians model was fit 

to the data by a “relaxation” variant of Expectation-Maximization, which reduces the 

chances of converging to local maxima [19,37]. We manually rated the unit quality when 

forming our spike sorted data sets. The waveforms seen in every channel were categorized 

based on their shape, amplitude, and principal components (Fig. 1c). We classified 

waveforms as presumed single neurons (category “4”), single units with minimal 

contamination by other units (category “3”), and multi-units (category “2” or “1”). Category 

1 units are likely contaminated by noise but still appear vaguely neural. Category 2 

waveforms are more visibly neural, but they are depicted by a centroid that is not clearly 

delineated from the central “hash” in principal component analysis (PCA). When analyzing 

the principal components, category 3 waveforms have a clearly delineated centroid with 

some overlapping units in the outer ring. This unit categorization did not occur when 

creating the thresholded data sets. For thresholded data sets, all waveforms that surpassed a 

set threshold level were analyzed regardless of their apparent quality. The same electrodes 

were used in both analyses.

To demonstrate how decoder performance would change if action potentials were sorted 

using other sophisticated techniques, we also performed the unsupervised, wavelet spike 

sorting algorithm described by Quiroga et al [38]. Each spike was decomposed using a 4-

level Haar wavelet transform. Next, ten wavelet coefficients with the largest deviations from 

normality were selected from each channel based on a modified Kolmogorov-Smirnov test. 

These were then clustered using the Potts Model superparamagnetic clustering (SPC) 

method. We used the software provided by Quiroga et al. to perform this analysis 

(www.vis.caltech.edu/~rodri/Wave_clus/Wave_clus_home.htm).
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To detect neural units, we initially spike sorted each of the 96 channels using the automated 

wavelet sorting algorithm. Afterwards, we manually adjusted the parameters of the SPC to 

further improve our sort results based on visual inspection of the similarity of clustered 

waveforms. The SPC was constrained to yield no more than 8 clusters per channel, but the 

typical number of discerned clusters was 2–4. We applied this algorithm to the first day of 

recording in Monkey I and the first two days of recording in Monkey L.

C. Neural Data Analysis

The same two types of offline neural decoders used in [20] were also applied in this study. 

We used Naïve Bayes classification as a discrete neural decoder to calculate how accurately 

we could predict target selection [7]. We modeled the firing rate of each channel during a 

500ms time window after target presentation as a Poisson distribution. The likelihood of 

each target was calculated using equations 4 and 5, where Θ is the actual target angle, θ is 

the predicted angle, yn is the number of spikes that occurred on neuron n, Y⃗ represents a 

vector of observed spikes, and N is the number of neurons.

(4)

(5)

The target that maximized this likelihood was selected. We trained and tested this model 

within the same day using 10-fold cross validation. We evaluated the performance using a 

percent correct variable that indicates how often we were able to correctly predict which 

target was selected.

In addition, we used a continuous offline linear decoder to predict the animal’s hand position 

[39]. For each trial, the data were divided into 100 ms bins and we found the average firing 

rate and hand position for every bin. We also used the firing rate information given at ten 

sequential 100 ms time lags. Using a linear Wiener filter, we modeled hand position as a 

function of firing rate for every channel. In equation 6, matrix X includes the average 

horizontal and vertical position for every bin. Every row of matrix Y contains the firing rates 

for each neuron at the 10 sequential time lags. Matrix B is calculated by linear regression 

and is the resulting linear decoder.

(6)
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We trained and tested this model within the same day using 20-fold cross validation. 

Continuous performance is given using a correlation coefficient between predicted and 

actual hand position.

In order to validate the accuracy of the linear regression decoder, we also measured the 

“mean distance to the target” during a decoded reach and compared the two metrics in the 

threshold analyses. The mean distance to target metric represents the distance to the 

peripheral target averaged across all of the timesteps during the reach [40]. An optimal reach 

with uniform speed will have a mean distance to target equal to half the total distance.

III. Results

A. Neural Data Unit Quality and Performance

To ensure that the data we are analyzing is representative of common data sets, we evaluated 

several characteristics. Figure 2 displays the spike panels on day 1 for both animals and 

Table 1 gives the distribution of unit types. Both animals show a similar trend, in that most 

of the waveforms contain a mixture of multiple units and the fewest represent single units. 

For Monkey L, 40% percent of sorted waveforms are noisy category 1 waveforms and only 

19% are single units. 47% percent of Monkey I’s waveforms are category 1 and only 12% 

are single units. These unit distributions are typical for a “good” array. Figure 3a displays 

the RMS voltages across all data sets. Monkey L’s average RMS voltage was 14.53 μVRMS 

and Monkey I’s was 9.22 μVRMS.

Figure 3b displays both decoders’ performances when using different subsets of spike sorted 

data. When analyzing spike sorted data, channels with low firing rates were not removed. 

Because there were likely large low-firing units, performance was higher when they were 

included. Their presence ensured that we did not specifically disadvantage spike sorting 

when comparing it to thresholding. Category 2 waveforms, which likely correspond to 

multiple neurons, gave the highest performance when isolated and analyzed compared to 

other individual categories. In addition, the performance values when using categories 2 and 

3 were only minimally improved when the single units were added into the analysis, though 

the improvements were statistically significant (t-tests, p<0.01). When units with ratings of 

2 through 4 were analyzed, they demonstrated the best overall performance with the smallest 

standard deviation. The Naïve Bayes percent correct was 94% for Monkey L and 83% for 

Monkey I. Correlation coefficients were 0.94 (L) and 0.90 (I). This subset of spike sorted 

data is what we used as a comparison for the remaining analyses.

B. Best RMS Threshold for Decoding

It is common practice for researchers to use the RMS voltage to set a threshold [8,21,41,42]. 

To quantitatively determine the best placement, we tested the decoder performances of 

different threshold levels from −3*VRMS to −18*VRMS (Fig. 4a). Channels with a firing rate 

<1Hz were removed. For the Naïve Bayes decoder, the best threshold level was −4.5*VRMS 

for Monkey L and −3*VRMS for Monkey I. These thresholds produced Naïve Bayes percent 

correct values of 90% (L) and 89% (I), with chance≈14%. The best correlation coefficient 

was seen at −4*VRMS for Monkey L, giving ρ=0.92. For Monkey I, it was seen at −3*VRMS 

and produced ρ=0.89. We used the mean distance to target metric to corroborate the trends 
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seen with correlation coefficient, and we found that both metrics displayed similar 

performance trends. Monkey L’s optimal threshold level was higher possibly because the 

array was older and may have contained more noise. For Monkey I, spike sorted data 

performance was slightly lower than that seen with threshold-crossing events. In addition, 

Monkey I’s threshold analyses did not contain a peak. The −3*VRMS threshold value, which 

was approximately −28μV on average, was initially set during recording and may not have 

been sufficiently low for this newer array. For Monkey L, the decoder performances of 

optimally thresholded data are only slightly lower than the spike sorted data, though the 

differences are statistically significant (p<0.001). For Monkey I, the Naïve Bayes 

performance of thresholded data is statistically significantly higher than that of the spike 

sorted data (p=2.4E-11), but the linear regression performance is not significantly different 

(p=0.908).

C. Best Fixed Voltage Threshold for Decoding

Some chip designs use a fixed voltage threshold for every channel instead of using the 

channels’ RMS voltages. This approach may work well if the mean and standard deviation 

of the RMS voltage are fairly tight. To test how our data sets would perform using this 

technique, and to determine which fixed voltage threshold would maximize performance, we 

tested the decoders for thresholds between −10 μV to −200 μV. Channels with a firing rate 

<1Hz were removed. The performances are given in the bottom row of Figure 4. For the 

Naïve Bayes decoder, Monkey L had the best performance at −70 μV, producing PC=88%. 

Monkey I was best at −10 μV, the lowest possible value, giving PC=89%. The best 

correlation coefficient was seen at −50 μV for Monkey L and −10 μV for Monkey I. This 

generated ρ=0.92 (L) and ρ=0.90 (I). The optimal thresholds in the linear regression analysis 

matched those seen in the mean distance to target analysis. For both animals, the 

performances associated with threshold levels of −10 to −30 μV were nearly identical due to 

the threshold level that was initially set during recording. For Monkey L, the performances 

of optimally thresholded data are only slightly lower than the spike sorted data, though the 

differences are statistically significant (p<0.001). For Monkey I, the Naïve Bayes 

performance of thresholded data is statistically significantly higher than that of the sorted 

data (p=2.7E-11), though the linear regression performance is not significantly different 

(p=0.912).

D. Partial Spike Sorting

If decoder performance is impaired when thresholding is used instead of spike sorting, it 

may be possible to spike sort a subset of the data to regain that performance. To determine 

which channels were best to spike sort, we tested the individual decoder performances of 

each channel on day 1. For every electrode, performance was measured when thresholded 

data were removed and replaced with the corresponding spike sorted data. We then ranked 

those channels by which ones gave the highest improvement [43] on day 1, and tested them 

on day 2 and beyond. We measured the performance after spike sorting the best channel, 

second best channel, etc. on the remaining data sets. For the partial spike sorting analysis, 

channels with low firing rates were not removed. The channels with low firing rates are 

different from day to day, which would interfere with our ability to rank and test the same 
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electrodes. This analysis is primarily used as a tool to identify the channels in both animals 

that were most affected by spike sorting or thresholding.

Figure 5a demonstrates that as more electrodes were spike sorted, the decoder performances 

increased for Monkey L. These trends were anticipated based on our previous finding that 

sorted data outperformed thresholded data for this animal. The results from Monkey I are 

not displayed because the thresholded data outperformed sorted data, and this analysis is 

primarily focused on regaining performance lost during thresholding. If 26 of Monkey L’s 

channels were spike sorted, the linear regression performance was no longer statistically 

different than the fully spike sorted data (p = 0.06). After spike sorting only six channels, 

the correlation coefficient was within 1% of that seen when fully spike sorting. On the other 

hand, 76 channels had to be sorted until the achieved Naïve Bayes performance was not 

significantly different (p = 0.051). Spike sorting 61 channels brought the Naïve Bayes 

accuracy within 1% of the performance seen when fully spike sorting for Monkey L.

When performing the partial spike sorting analysis, channels were ranked based on which 

gave the highest improvement in decoder performance on day 1 when its thresholded data 

was replaced with sorted data. In addition to the above analysis, we also analyzed the 

properties of the four best and worst channels to spike sort in both animals. As expected, the 

best channels to spike sort included multiple units with independent tuning properties. On 

the other hand, the worst channels to spike sort indicated that manual aspects of our spike 

sorting technique were occasionally flawed. For example, waveforms without a distinct 

bipolar shape were removed during spike sorting, yet they occasionally contained useful 

information. In addition, it is nearly impossible to visually distinguish between useful hash 

and noise. Two units could appear extremely similar, yet only one of them led to an 

improvement in decoder performance when spike sorted. Research by Wood and colleagues 

supports this claim, finding an average error rate of 23% false positive and 30% false 

negative regarding the manual sorting of synthetic data [28]. Finally, we found that the 

automated portion of our spike sorter occasionally broke a single good unit into multiple 

spikes, which may have made the signal noisier and less useful.

E. Wavelet-Based Spike Sorting

To fairly represent the performance of other spike sorting algorithms, we performed an 

unsupervised, wavelet spike sorting algorithm [38]. Unlike principal component analysis 

(PCA), wavelet coefficients offer better discrimination of the temporal features of action 

potentials due to the time scaling property of the wavelet decomposition. Moreover, 

superparamagnetic clustering (SPC) offers a more general clustering method, neither 

requiring non-overlapping clusters in the feature space, nor assuming a particular 

distribution (such as our original Gaussian Expectation-Maximization clustering method) 

[38]. We tested the wavelet-sorted algorithm on three data sets to ensure a good 

approximation. As Figure 5b demonstrates, the differences in decoder performance between 

the wavelet-sorted data and our PCA-clustered data are very small. Therefore, we concluded 

that it was acceptable to perform PCA-based spike sorting methods in our analyses.
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IV. Discussion

We have demonstrated that threshold-crossing events can be used to analyze BMI data 

instead of spike sorting without causing a substantial decrease in performance. The Naïve 

Bayes percent correct changed by 5% on average and the correlation coefficient changed by 

0.015. Based on the quality and performance of our neural data, it appears that it is 

representative of that commonly seen for BMIs. Our results demonstrate that thresholds 

between −3 to −5*VRMS result in similar performances. While this study contains a limited 

number of arrays, we hypothesize that the best RMS threshold to place for arrays with 

smaller noise is around −3*VRMS. For arrays with larger noise, the best threshold may be 

approximately −4.5*VRMS. It is not possible to determine a fixed voltage threshold that will 

work on every data set, because characteristics vary between subjects. A fixed voltage 

threshold generally gives lower performance and also requires the user to manually tune the 

threshold.

The decoder performances of Monkey L’s data are indicative of the common notion that 

spike sorted data performance is slightly higher than that of thresholded data, although the 

Naïve Bayes accuracy is only 4% greater and the correlation coefficient is just 0.02 higher. 

While it still requires human intervention, our partial spike sorting analysis demonstrates 

that any performance lost due to thresholding can be regained after spike sorting a small 

subset of channels. The waveform characteristics of the best and worst channels to sort did 

not display any consistent trends, so it is not possible for us to say exactly which traits to 

look for when choosing a subset of channels to spike sort. Although spike sorting was 

favorable when there were multiple units with independent tuning properties, tuning 

properties cannot be determined upon inspection only. In addition, it is nearly impossible to 

visually distinguish between useful hash and noise. An algorithm by Ventura [44] would be 

useful in a partial spike sorting analysis, because it determines if units should be unsorted or 

sorted based on what leads to the highest decoder performance.

On the other hand, the spike sorted and thresholded data in Monkey I showed dissimilar 

results. The correlation coefficient was not significantly different. In addition, for Naïve 

Bayes classification, the thresholded data performance was actually higher than that of 

sorted data. This is possibly due to unnecessary unit splitting by the automated portion of the 

spike sorter.

Opposite results between two animals also occurred in a study performed by Fraser and 

colleagues, where spike sorted data outperformed unsorted data in one case but not the other 

[21]. Our results are consistent with the studies by Gilja et al. and Stark and Abeles, in that 

we demonstrate that complex movements can be decoded without the detection of spikes 

[8,24]. However, the recent study published by Todorova et al. concluded that spike sorting 

adds value to the threshold-crossing methods employed in BMI decoding [27]. In their 

study, threshold levels were set in order to maximize the ability to perform spike sorting in 

Monkey A. Their Figure 2 shows that many of the thresholds for this animal were higher in 

amplitude than the optimal levels we saw, which would tend to hinder the decoder 

performance of thresholded data (as seen in our Figure 4). They demonstrated that the 

optimal linear estimator (OLE) amplitude-sorted data from Monkey A led to ~12% 
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performance gain compared to OLE unsorted data. In our study, with Monkey L, a threshold 

of −6.5*VRMS can also cause the sorted data to outperform thresholded data by 12%. The 

data from the other animal in their study was thresholded at three standard deviations below 

the mean of the bandpass filtered voltage traces, which led to threshold levels more similar 

to ours. Subsequently, the OLE amplitude-sorted data only outperformed OLE unsorted data 

by ~6%, which was more consistent with Monkey L’s results from our study. Our study 

concludes that if you sweep the threshold systematically, it is possible to find a range where 

threshold crossings perform essentially as well as spike sorting. The use of threshold 

crossings instead of spike sorting will make it easier to build implantable prosthetics 

processors and chips with threshold-crossing detectors [45].

It is important to note that our analysis was performed offline, and our sorting method was 

not fully automated. Other studies, such as that by Todorova et al., found similar results 

across more decoders. Our conclusions do not hold if there is a large amount of noise or 

motion artifacts, although it is rare for these to hinder threshold crossings while leaving units 

intact. In fact, noise artifacts tend to be lower in wireless systems that often have very short 

wires and good shielding [45]. To our knowledge, this is the first study to determine an 

optimal threshold level in addition to analyzing the contributions of different neuron 

subpopulations in a large number of data sets.

With current microelectrode array technology, our study demonstrates that thresholding and 

spike sorting can be used essentially interchangeably without seeing a significant decrease in 

performance. The utilization of threshold-crossing events may allow for an easier transition 

of BMI devices from research into the clinic due to simpler hardware and software. This 

also allows for long-term systems with lower power consumption and it can be applied to 

systems with a high number of electrode channels.
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Figure 1. 
(a) A monkey performing the center-out reaching task on a fronto-parallel screen in 

complete darkness. (b) Timeline of the implantation and recording from Utah arrays. (c) A 

visual explanation of how waveforms are classified during spike sorting.
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Figure 2. 
Spike panels of Monkey L (left) and I (right) on the first day of recording. Waveform colors 

correspond to the legend shown in Fig. 1c (single units are in blue, green waveforms 

represent single units with minimal contamination by other units, multi-units are in red, gray 

waveforms are multiple units with potential noise contamination, and noise is yellow). 

Sample thresholds are placed at −4.5*VRMS for Monkey L and −3*VRMS for Monkey I.
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Figure 3. 
(a) Histograms of the RMS voltages across all electrode channels with firing rate >1Hz over 

all data sets. The black dot represents that animal’s mean RMS voltage. (b) We investigated 

how classes of waveforms performed individually, and then we combined waveform classes 

in order to determine which subset of spike sorted data would give the highest performance. 

Ratings of 4 represent single units and ratings of 1 contain a mixture of multiple units that is 

likely contaminated by noise. The gray error bars represent standard deviation.
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Figure 4. 
On all figures, Monkey L is shown in blue and Monkey I is shown in red. The shaded region 

represents standard deviation. The dashed lines depict the decoder performance of the spike 

sorted data, specifically waveforms with ratings 2–4. This subset of data was previously 

found to give the highest sorted performance while likely ensuring that noise contamination 

is removed. (a) The top row demonstrates the performances of three decoders at varying 

VRMS threshold levels. (b) The bottom row represents the performance at varying fixed 

voltage threshold levels.

Christie et al. Page 18

J Neural Eng. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
(a) Decoder performance when a subset of channels is spike sorted and the remainder is 

thresholded at that animal’s optimal RMS threshold. In each graph, one solid line represents 

the performance when all channels are thresholded and the other line represents spike 

sorting all channels on day 2 and beyond. The data points in between the lines represent the 

performance seen when sorting a particular number of channels. (b) Decoder performance 

for each method of data processing. TC represents data that uses threshold-crossing events, 

WS symbolizes the wavelet sorted data, and SS characterizes the data sorted with our spike 

sorting algorithms.
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TABLE I

Distribution of Waveforms on Day 1

Category
Number of Waveforms

Monkey L Monkey I

1 60 (39.47%) 102 (47.00%)

2 39 (25.66%) 59 (27.19%)

3 24 (15.79%) 31 (14.29%)

4 29 (19.08%) 25 (11.52%)
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